

Page 1 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Lab no 08: Interrupts and Timers

The purpose of this Lab is to know how to make blink led
application using timers and interrupts (using switch) interfaces

Parts: -

1. What are Interrupts?

a) What is ISR?

b) External Interrupt vs Internal Interrupt?

c) Maskable Interrupt vs Non Maskable Interrupt?

d) Overview of Interrupt Process
e) How to code Blink LED with Button?

 2.Timers / Counters

 A) What is prescaler?

 B) Modes of Operation

 C) Timer/Counter 0 (8 Bits)

 D) How to code Blink LED in 1 second using

 timer 0?

 E) Difference Between Interrupt and Polling

F)What's The difference between interrupts and
delay in embedded programming?

https://electronics.stackexchange.com/questions/78362/whats-the-fundamental-difference-between-interrupts-and-delay-in-embedded-progr
https://electronics.stackexchange.com/questions/78362/whats-the-fundamental-difference-between-interrupts-and-delay-in-embedded-progr

Page 2 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. What are Interrupts?

An interrupt is a signal to the processor emitted by hardware or
software indicating an event that needs immediate attention.
Whenever an interrupt occurs, the controller completes the
execution of the current instruction and starts the execution of
an Interrupt Service Routine (ISR) or Interrupt Handler. ISR tells
the processor or controller what to do when the interrupt occurs.
The interrupts can be either hardware interrupts or software
interrupts.

Part 1. A) Interrupt Service Routine

For every interrupt, there must be an interrupt service routine
(ISR), or interrupt handler. When an interrupt occurs, the
microcontroller runs the interrupt service routine. For every
interrupt, there is a fixed location in memory that holds the
address of its interrupt service routine, ISR. The table of memory
locations set aside to hold the addresses of ISRs is called as the
Interrupt Vector Table.

Page 3 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. B) External Interrupt vs Internal Interrupt?

• External interrupts

External interrupts come from input-output (l/0) devices,
from a timing device, from a circuit monitoring the power
supply, or from any other external source.

• Internal interrupts

Internal interrupts arise from illegal or erroneous use of an
instruction or data. Internal interrupts are also called traps.

➢ The main difference between internal and external
interrupts is that the internal interrupt is initiated by some
exceptional condition caused by the program itself rather
than by an external event.

 External interrupts depend on external conditions that are

 independent of the program being executed at the time.

Page 4 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. C) Maskable Interrupt vs Non Maskable Interrupt?

 Maskable Interrupt Non Maskable Interrupt

Maskable interrupt is a
hardware Interrupt that
can be disabled or
ignored by the
instructions of CPU.

A non-maskable interrupt is
a hardware interrupt that
cannot be disabled or
ignored by the instructions
of CPU.

When maskable
interrupt occur, it can
be handled after
executing the current
instruction.

When non-maskable
interrupts occur, the current
instructions and status are
stored in stack for the CPU
to handle the interrupt.

➢ Interrupts are events detected by the MCU which cause
normal program flow to be preempted. Interrupts pause the
current program and transfer control to a specified user-
written firmware routine called the Interrupt Service Routine
(ISR). The ISR processes the interrupt event, then resumes
normal program flow.

Page 5 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. D) Overview of Interrupt Process

Step 1. Program MCU to react to interrupts

The MCU must be programmed to enable interrupts to occur.
Setting the Global Interrupt Enable (GIE) and, in many cases, the
Peripheral Interrupt Enable (PEIE), enables the MCU to receive
interrupts. GIE and PEIE are located in the Interrupt Control
(INTCON) special function register.

Step 2. Enable interrupts from selected peripherals

Each peripheral on the MCU has an individual enable bit. A
peripheral's individual interrupt enable bit must be set, in addition
to GIE/PEIE, before the peripheral can generate an interrupt. The
individual interrupt enable bits are located in INTCON, PIE1,
PIE2, and PIE3.

Step 3. Peripheral asserts an interrupt request

When a peripheral reaches a state where program intervention
is needed, the peripheral sets an Interrupt Request Flag (xxIF).
These interrupt flags are set regardless of the status of the GIE,
PEIE, and individual interrupt enable bits. The interrupt flags are
located in INTCON, PIR1, PIR2, and PIR3.

The interrupt request flags are latched high when set and must
be cleared by the user-written ISR.

Page 6 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Step 4. Interrupt occurs

When an interrupt request flag is set and the interrupt is properly
enabled, the interrupt process begins:

• Global Interrupts are disabled by clearing GIE to 0.
• The current program context is saved to the shadow

registers.
• The value of the Program Counter is stored on the return

stack.
• Program control is transferred to the interrupt vector at

address 04h.

Step 5. ISR runs

The ISR is a function written by the user and placed at address
04h. The ISR does the following:

1. Checks the interrupt-enabled peripherals for the source of
the interrupt request.

2. Performs the necessary peripheral tasks.
3. Clears the appropriate interrupt request flag.
4. Executes the Return from Interrupt instruction (RETFIE) as

the final ISR instruction.

Step 6. Control is returned to the Main program

When RETFIE is executed:

1. Global Interrupts are enabled (GIE=1).
2. The program context is restored from the Shadow

registers.

Page 7 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

3. The return address from the stack is loaded into the
Program Counter.

4. Execution resumes from point at which it was interrupted.

Part 1. E) How to code Blink LED with Button?

The first rule to code an interrupt is that we need to set the I (bit
7) of the AVR Status register. The I bit is global interrupt
enable.

According to datasheet and AVR architecture the Global
interrupt bit is a must to be set bit. It should be enabled first and
then one can easily enable individual interrupts using separate
control registers.

Interrupt in AVR is two-way lock first you need to set the
global interrupt bit and then you need to set the individual
interrupt bit of that particular peripheral then only you can
receive interrupt.

Below is the SREG register that is the status register for whole
AVR. It contains all the necessary flags.

After setting this we need to see the pin diagram and select the
pins which can be used for external interrupt and pin change
interrupt.

Page 8 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

So, if you have a look at pin diagram you can see that we have
digital pin 2 and 3 as the external interrupt pin that is INT1 and
INT0. And if you want to program PCINT interrupt then you
need to look at the other sets of registers present for pin
change interrupt.

https://www.arduino.cc/en/Hacking/PinMapping168

Page 9 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

External Interrupt configuration

For External Interrupt – Now if you go through the Register
description of external interrupt you will find various registers
that you need to program while writing a code. Registers like
EIMSK and EICRA – External Interrupt Control Register would
be altered according to requirement.

EICRA Register
Here EICRA is used to select what type of interrupt you want
like- Level triggered or Edge triggered. So you can set particular
bit for the type of interrupt you want to be configured.

EIMSK Register
Then In EIMSK you can set bit 1 and 2 for the pin from where
you have connected your button in the circuit. It would be set
according to your connection. If you have connected PD2 then
INT0 would be set and if you have connected to PD3 the INT1
would be selected.

Page 10 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Code for Blink LED with Button
Let’s take external interrupt from a switch and use that interrupt
to blink a led. Now here below you can find the circuit.

So, we have connected the switch to digital pin 3 that is
the INT1 now we need to set the bits of various register
accordingly. So as to get the desired result.

Page 11 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

➢ The code for getting the desired result is below.

THE EXPECTED OUTPUT FROM CODE IS THAT
WHENEVER THERE IS AN INTERRUPT FROM SWITCH
THE LED SHOULD TURN ON.

 #include<avr/io.h>
 #include<util/delay.h>

 #include<avr/interrupt.h>

//These three are set of pre-processors that can be used to

Set, Reset and toogle the bit

 #define SET_BIT(port,bit) port|=(1<<bit)

 #define CLEAR_BIT(port,bit) port&=~(1<<bit)

 #define TOGGLE(PORT,BIT) PORT^=(1<<BIT)

void init();//Declaration of Function

int main()

 {

 init();

 while(1)//infinite loop

 {

 //nothing in loop cause it will work on interrupts

 }

 return 0;

 }

//the ISR-INTERRUPT SERVICE ROUTINE

 ISR(INT1_vect)

 {

 PORTB=~PORTB; //toggling the portB

 }

http://doafco.com/wp/2019/07/01/bitwise-operators/
http://doafco.com/wp/2019/07/01/bitwise-operators/

Page 12 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

//We have created a separate Function for all initialization

so as to make our program look more readable.

 void init()

 {

//GPIO CODE

 DDRB|=(1<<PB5);//LED CONNECTED TO DIGITAL PIN 13 ,VALUE 1

 DDRB&=~(1<<PD3);//SLIDE BUTTON CONNECTED TO PIN 11 AS INPUT

THUS VALUE ZERO

//the two way lock for interrupt is shown here first I //bit

is set then external interrupt bit -EIMSK is set

SREG|=(1<<7); //GLOBAL INTERRUPT

//EXTERNAL INTERRUPT Configuration

 EICRA|=(1<<ISC10); // Setting control register to Any logical

change on INT1 means whenever the logic will change interrupt

will occur

 EIMSK|=(1<<INT1); // Enabling interrupt from INT1

 }

For writing Interrupt code in AVR we always need to follow this
convention. We need to write ISR (name of Interrupt Vector)
and then we can write our Interrupt service routine i.e. the piece
of code we want to execute whenever the interrupt occurs. Like
in this case we wanted to toggle the state of LED OFF/ON
whenever the Button is pushed.

Page 13 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. Timers / Counters

• The Atmega328P has a total of three timer/counters

named Timer/counter 0, Timer/counter 1, and
Timer/counter 2.

• The first and last of these are both 8-bit timer/counters and
have a maximum value of 255, while Timer/Counter 1 is 16
bits and its maximum is 65,535

• In much of what follows, you may see references
to TOP, MAX, and/or BOTTOM. These are definitions that
are used in the data sheet for the ATmega328P and refer
to the following:

▪ BOTTOM is easy. It is always zero.

▪ MAX is also easy. It is always the maximum value
that can be held in the timer/counter’s TCNTn register
according to however many bits the timer/counter is
configured for. This is calculated as 2bits – 1.

o For Timer/counters 0 and 2, this is always 8 bits,
and so MAX always equals 255. For
Timer/counter 1, MAX varies as follows:

o In 8-bit mode, MAX = 255.
o In 9-bit mode, MAX = 511.
o In 10-bit mode, MAX = 1,023.
o In 16-bit mode, MAX = 65,535.

Page 14 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

▪ TOP depends on the timer/counter’s mode and is
either MAX for some modes or as defined by various
other timer/counter registers such
as OCRnA, OCRnB, ICR1, etc.

Part 2.A) What is prescaler?

A prescaler is an electronic counting circuit used to reduce a
high frequency electrical signal to a lower frequency by integer
division.
The prescaler takes the basic timer clock frequency (which may
be the CPU clock frequency or may be some higher or lower
frequency) and divides it by some value before feeding it to the
timer, according to how the prescaler register(s) are configured.

The prescaler values, referred to as prescales, that may be
configured might be limited to a few fixed values (powers of 2),
or they may be any integer value from 1 to 2^P, where P is the
number of prescaler bits.

https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Integer_division
https://en.wikipedia.org/wiki/Integer_division

Page 15 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. B) Modes of Operation

▪ Normal mode: the simplest mode of operation

In this mode the counting direction is always up
(incrementing)
The counter simply overruns when it passes its
maximum 8-bits value (top =0xFF) and restart from
bottom (0x00)

▪ Clear Timer on Compare Match (CTC) Mode
In CTC mode the counter is cleared to zero when the
counter value (TCNTX) matches the OCRX

The OCRX defines the top value for counter hence
also its resolution
Fast PWM

Page 16 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

▪ Fast PWM Mode
▪ Phase Correct PWM Mode

Part 2. C) Timers / Counters0

 See Datasheet page74

Part 2. D)How to code Blink LED in 1 second using timer

0?

1. Load the TCNT0 register with the initial value (let’s take
0x25).

2. For normal mode and the pre-scaler option of the clock, set
the value in the TCCR0A register. As soon as the clock
Prescaler value gets selected, the timer/counter starts to count,
and each clock tick causes the value of the timer/counter to
increment by 1.

3.Timer keeps counting up, so keep monitoring for timer
overflow i.e. TOV0 (Timer0 Overflow) flag to see if it is raised.

4. Stop the timer by putting 0 in the TCCR0 i.e. the clock source
will get disconnected and the timer/counter will get stopped.

5. Clear the TOV0 flag. Note that we have to write 1 to the
TOV0 bit to clear the flag.

6. Return to the main function.

Hardware Connection

Page 17 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

/*

 * timer_application.c

 *

 * Created: 4/22/2022 9:28:25 PM

 * Author : Miada_Pc

 */

#include <stdint.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#define toggle_BIT(PORT,BIT) PORT ^= (1<<BIT) //this will flip

the bit

#define SET_BIT(PORT,BIT) PORT |= (1<<BIT)

#define CLR_BIT(PORT,BIT) PORT &= ~(1<<BIT)

volatile unsigned int count = 0;

void timer()

{

 TCCR0A = 0x00; // Normal mode of operation

 SET_BIT(TCCR0B,0); // no prescaler

 TIMSK0 |= 1<<TOIE0; // Enable timer0 overflow interrupt

 sei(); // Global interrupt

 SET_BIT(EIMSK,1);

}

Page 18 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

int main(void)

{

 SET_BIT(DDRD,PD7);

 timer();

 while(1)

 {

 }

 return 0;

}

ISR(TIMER0_OVF_vect)

{

 count++;

 if(count==31250)

 {

 toggle_BIT(PORTD,PD7);

 count=0;

 }

}

Page 19 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. E) Difference Between Interrupt and Polling

Polling: the mechanism that indicates the CPU that a device
requires its attention. It is a continuous act to figure out whether
the device is working properly.

Mainly, polling causes the wastage of many CPU cycles.
Especially, if there are many devices to check, then the time
taken to poll them could exceed the time available to service
the I/O device.

❖ Interrupt VS Polling

▪ Definition

An interrupt is an event that is triggered by external
components other than the CPU that alerts the CPU to
perform a certain action. In contrast, polling is a
synchronous activity that samples the status of an external
device by a client program. Thus, this describes the main
difference between interrupt and polling.

Page 20 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

▪ Result

When an interrupt occurs, the interrupt handler is executed.
On the other hand, in polling, the CPU provides the service.

▪ Occurrence

Another difference between interrupt and polling is that
interrupt can occur at any time while polling occurs at
regular intervals.

▪ Indication

Moreover, the interrupt-request line indicates that a device
needs a service whereas command-ready bit indicates a
device needs service.

▪ CPU cycles

Interrupt does not waste many CPU cycles while polling
wastes a lot of CPU cycles. Hence, this is also a difference
between interrupt and polling.

▪ Efficiency

Furthermore, in the case of interrupt, it is inefficient when
the devices interrupt the CPU frequently. In contrast,
polling is inefficient, when the CPU does not get much
requests from the devices.

➢ The main difference between interrupt and polling is that in
interrupt, the device notifies the CPU that it requires
attention while, in polling, the CPU continuously checks the

Page 21 of 21

Faculty of Computers and Artificial Intelligence

 Embedded Systems

status of the devices to find whether they require attention.
In brief, an interrupt is asynchronous whereas polling is
synchronous.

Part 2. F) What's The difference between timers and delay

in embedded programming?

A delay is a operation which holds the execution of the current
thread so the next operation that is in line will have to wait until
the delay operation is over.

 A timer on the other hand is not blocking your normal code.
It runs in the other thread parallel to the execution on your
normal code and only if the timer end is reached it will jump to
the code that you provided for your timer end and after that
code is complete it will jump back to the main program
execution. Counter is just a normal variable that is
incremented if you tell it to and it can be done either in normal
variable in the code or special register that will be storing your
counter.

➢ So the main target here to understand is that delay is
blocking code execution and timer don’t. Counter is just
counting and it can either be blocking or not.

https://electronics.stackexchange.com/questions/78362/whats-the-fundamental-difference-between-interrupts-and-delay-in-embedded-progr
https://electronics.stackexchange.com/questions/78362/whats-the-fundamental-difference-between-interrupts-and-delay-in-embedded-progr

